Sox6 Is Necessary for Efficient Erythropoiesis in Adult Mice under Physiological and Anemia-Induced Stress Conditions
نویسندگان
چکیده
BACKGROUND Definitive erythropoiesis is a vital process throughout life. Both its basal activity under physiological conditions and its increased activity under anemia-induced stress conditions are highly stimulated by the hormone erythropoietin. The transcription factor Sox6 was previously shown to enhance fetal erythropoiesis together and beyond erythropoietin signaling, but its importance in adulthood and mechanisms of action remain unknown. We used here Sox6 conditional null mice and molecular assays to address these questions. METHODOLOGY/PRINCIPAL FINDINGS Sox6fl/flErGFPCre adult mice, which lacked Sox6 in erythroid cells, exhibited compensated anemia, erythroid cell developmental defects, and anisocytotic, short-lived red cells under physiological conditions, proving that Sox6 promotes basal erythropoiesis. Tamoxifen treatment of Sox6fl/flCaggCreER mice induced widespread inactivation of Sox6 in a timely controlled manner and resulted in erythroblast defects before reticulocytosis, demonstrating that impaired erythropoiesis is a primary cause rather than consequence of anemia in the absence of Sox6. Twenty five percent of Sox6fl/flErGFPCre mice died 4 or 5 days after induction of acute anemia with phenylhydrazine. The others recovered slowly. They promptly increased their erythropoietin level and amplified their erythroid progenitor pool, but then exhibited severe erythroblast and reticulocyte defects. Sox6 is thus essential in the maturation phase of stress erythropoiesis that follows the erythropoietin-dependent amplification phase. Sox6 inactivation resulted in upregulation of embryonic globin genes, but embryonic globin chains remained scarce and apparently inconsequential. Sox6 inactivation also resulted in downregulation of erythroid terminal markers, including the Bcl2l1 gene for the anti-apoptotic factor Bcl-xL, and in vitro assays indicated that Sox6 directly upregulates Bcl2l1 downstream of and beyond erythropoietin signaling. CONCLUSIONS/SIGNIFICANCE This study demonstrates that Sox6 is necessary for efficient erythropoiesis in adult mice under both basal and stress conditions. It is primarily involved in enhancing the survival rate and maturation process of erythroid cells and acts at least in part by upregulating Bcl2l1.
منابع مشابه
Sox6 cell-autonomously stimulates erythroid cell survival, proliferation, and terminal maturation and is thereby an important enhancer of definitive erythropoiesis during mouse development.
Erythropoiesis, the essential process of hematopoietic stem cell development into erythrocytes, is controlled by lineage-specific transcription factors that determine cell fate and differentiation and by the hormone erythropoietin that stimulates cell survival and proliferation. Here we identify the Sry-related high-mobility-group (HMG) box transcription factor Sox6 as an important enhancer of ...
متن کاملMacrophages Support Splenic Erythropoiesis in 4T1 Tumor-Bearing Mice
Anemia is a common complication of cancer; a role of spleen in tumor-stress erythropoiesis has been suggested. However, the molecular mechanisms involved in the splenic erythropoiesis following tumor maintenance remain poorly understood. Here we show that tumor development blocks medullar erythropoiesis by granulocyte colony-stimulating factor (G-CSF) and then causes anemia in murine 4T1 breast...
متن کاملIdentification and analysis of mouse erythroid progenitors using the CD71/TER119 flow-cytometric assay.
The study of erythropoiesis aims to understand how red cells are formed from earlier hematopoietic and erythroid progenitors. Specifically, the rate of red cell formation is regulated by the hormone erythropoietin (Epo), whose synthesis is triggered by tissue hypoxia. A threat to adequate tissue oxygenation results in a rapid increase in Epo, driving an increase in erythropoietic rate, a proces...
متن کاملA mouse model for an erythropoietin-deficiency anemia.
In mammals, the production of red blood cells is tightly regulated by the growth factor erythropoietin (EPO). Mice lacking a functional Epo gene are embryonic lethal, and studying erythropoiesis in EPO-deficient adult animals has therefore been limited. In order to obtain a preclinical model for an EPO-deficient anemia, we developed a mouse in which Epo can be silenced by Cre recombinase. After...
متن کاملSWAP-70 regulates erythropoiesis by controlling α4 integrin.
UNLABELLED Background The regulation of normal and stress-induced erythropoiesis is incompletely understood. Integrin-dependent adhesion plays important roles in erythropoiesis, but how integrins are regulated during erythropoiesis remains largely unknown. DESIGN AND METHODS To obtain novel insights into the regulation of erythropoiesis, we used cellular and molecular approaches to analyze th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2010